An ¹⁹F NMR STUDY OF THE TRANSMITTING ABILITY OF METAL-CONTAINING BINUCLEAR BRIDGING GROUPS *

S.I. POMBRIK, L.S. GOLOVCHENKO, E.V. POLUNKIN, A.S. PEREGUDOV, and D.N. KRAVTSOV Institute of Organo-Element Compounds, Academy of Sciences, Moscow (U.S.S.R.) (Received November 22nd, 1984)

Summary

Nine series of model compounds of the $Ar_n-Q-Z-C_6H_4F-4$ type have been studied by the ¹⁹F NMR technique to determine the relative efficiency of the transmission of substituent effects through metal-containing binuclear bridging groups (BBG) of the $-Q-Z-(Q = Hg, Sn; Z = CH_2, S, N)$ type. On the basis of the results obtained it was concluded that the increase of the transmitting ability (*TA*) of a metal-containing BBG is close to that of mononuclear metal bridges. It is assumed that this effect is caused by the σ, π -conjugation of the Q-Z σ -bonds with the π -electrons of the aromatic ring and/or by the conjugation of the lone electron pairs of Z with the π -electron system. The *TA* of metal-containing BBG depends substantially on the participation of the metal atom in inter- and intra-molecular coordination and decreases with increasing intensity of the coordination interaction.

Introduction

The problem of the transmission of substituent electron effects (SEE) through bridging groups containing heavy non-transition metal atoms is interesting for the theoretical chemistry of organometallic compounds.

Previously the transmission of SEE in mononuclear bridge systems of the $ArQC_6H_4F-4$ (Q = Hg, Sn, Bi, Si, P, N, CH) type [1-5] has been studied by ¹⁹F NMR.

This work investigates the relative efficiency of the transmission of SEE through metal-containing binuclear bridging groups (BBG) of the -Q-Z- (Q = Hg, Sn; Z = CH₂, S, N(SO₂Ph)) type and the influence exerted on it by inter- and intramolecular coordination. We used the ¹⁹F NMR technique as the investigation method.

(Continued on p. 84)

^{*} Dedicated to Prof. O.A. Reutov on the occasion of his 65th birthday.

TABLE 1

¹⁹F NMR CHEMICAL SHIFTS RELATIVE TO INTERNAL FLUOROBENZENE (ppm)

Compound	Solvent				
	CHCl ₃	C ₆ H ₅ Cl	C ₅ H ₅ N	Me ₂ SO	
Series I					
$(4-MeOC_6H_4)_3SnCH_2C_6H_4F-4$	6.93	_	7.01	7,43	
(4-MeC, HA) SnCH C, HAF-4	6.91	-	6.98	7.09	
$(3-MeC_{\ell}H_{\star})_{2}SnCH_{2}C_{\ell}H_{\star}F-4$	7.04				
$(C_{c}H_{c})_{3}$ SnCH ₂ C _c H ₄ F-4	6.71		6.63	6.72	
$(4-C C,H_{\star})_{a}$ SnCH _a C, H ₄ F-4	5.64	_	5.85	6.21	
(3 - C)C + S - C + C + E - A	5 59		5.68	6.24	
$(A \in C \cup H)$ SpCH C U E A	6.05		6.17	6.42	
(2 EC H) Solution C H E 4	5.74	-	5.05	6.42	
$(3-\Gamma C_6 \Pi_4)_3 S \Pi C \Pi_2 C_6 \Pi_4 \Gamma_4$	5.74		5.95	6.24	
$(3,5-Cl_2C_6H_3)_3$ SnCH ₂ C ₆ H ₄ F-4	4.39		4.99	6.09	
$(3,4-Cl_2C_6H_3)_3$ SnCH ₂ C ₆ H ₄ F-4	4.//	_	5.49	6.17	
Series II					
$(4-\text{MeC}_6\text{H}_4)_3\text{SnSC}_6\text{H}_4\text{F}-4$	3.41	-	3.70	4.81	
$(3-\text{MeC}_6\text{H}_4)_3\text{SnSC}_6\text{H}_4\text{F}-4$	3.41	-			
$(C_6H_5)_3SnSC_6H_4F-4$	2.94	-	3.50	5.10	
$(4-ClC_6H_4)_3SnSC_6H_4F-4$	1.81	-	3.10	5.37	
$(3-ClC_6H_4)_3$ SnSC ₆ H ₄ F-4	1.68	_	3.38	4.98	
$(4-FC_{4}H_{4})_{3}$ SnSC ₄ H ₄ F-4	2.18		3.37	5.23	
(3-FC, H,), SnSC, H, F-4	1.90		3.52	4.74	
$(3.4-Cl_{2}C_{2}H_{3})_{2}SnSC_{2}H_{4}F-4$	0.73	_	2.66	4.67	
$(3.5-C)_{2}C_{2}H_{3})_{3}SnSC_{2}H_{4}F-4$	0.20		2 37	4 23	
$(3,4,5-Cl_{2}C_{6}H_{3})_{3}SnSC_{6}H_{4}F-4$	0.35	_	2.34	4.13	
A ME NO HE HERO HE A	4 21	4 71	6.47	())	
$4 \operatorname{Me}_2 \operatorname{NC}_6 \operatorname{H}_4 \operatorname{H}_2 \operatorname{SC}_6 \operatorname{H}_4 \operatorname{F}_4$	4.21	4.71	0.4.5	0.23	
$4-\text{MeUC}_6\text{H}_4\text{HgSC}_6\text{H}_4\text{F}-4$	-	4.55	—	-	
$4-\text{MeC}_6\text{H}_4\text{HgSC}_6\text{H}_4\text{F}-4$	-	4.45		-	
$C_6H_5HgSC_6H_4F-4$	1.00m	4.28	6.46	6.26	
4-ClC ₆ H ₄ HgSC ₆ H ₄ F-4	-	3.96		-	
3-ClC ₆ H ₄ HgSC ₆ H ₄ F-4	-	3.90	-	-	
4-FC ₆ H ₄ HgSC ₆ H ₄ F-4	3.45	4.04	6.30	7.23	
3-FC ₆ H ₄ HgSC ₆ H ₄ F-4	-	3.81	-	_	
3,4-Cl ₂ C ₆ H ₃ HgSC ₆ H ₄ F-4	-	3.71	6.31	6.25	
3-CF ₃ C ₆ H ₄ HgSC ₆ H ₄ F-4	3.14	3.68	6.32	6.25	
Series IV					
4-Me ₂ NC ₆ H ₄ SHgC ₆ H ₄ F-4	-1.80	-1.14	0.39	0.24	
4-MeOC H SHgC H F-4	-2.18	-1.47	0.28	-	
4-MeC H SHOC H F-4	-2.10	-143	0.20		
C.H.SHOC.H.F-4	- 2.04		0.31	- 0.23	
$\sim_{0} \sim_{0} \sim_{0$	- 2 70	_1.05	0.24	0.20	
$+ C_{6} + C_{14} + $	- 2.70	- 1.79	0.24	-	
J = C + S = C + S = A	~ 2.70	- 1.98	0.27	-	
$+1C_{6}$ H_{4} C_{6} H_{4} C_{7} H_{7} $H_$	- 2.71	-	0.27	0.24	
$3-r_6H_4$ $3H_6C_6H_4F-4$	- 3.01	- 1.9/	0.28		
$3,4-Cl_2C_6H_3SHgC_6H_4F-4$	- 2.94	- 2.21	0.20	-	
3-CF ₃ C ₆ H ₄ SHgC ₆ H ₄ F-4	-2.83	- 2.10	0.30	0.27	
Series V					
4-Me ₂ NC ₆ H ₄ SCH ₂ C ₆ H ₄ F-4		3.06	3.00	2.90	
$4-MeOC_6H_4SCH_2C_6H_4F-4$		2.62	2.69	2.67	
4-MeC ₆ H ₄ SCH ₂ C ₆ H ₄ F-4		2.54	2.58	2.57	

TABLE 1 (continued)

Compound	Solvent			
	CHCl ₃	C6H2CI	C ₅ H ₅ N	Me ₂ SO
Series V				
PhSCH ₂ C ₄ H ₄ F-4	-	2 38	_	2 47
4-CIC+HASCH2C+HAF-4	_	2.00	2 19	2.47
3-CIC H SCH C H F-4	-	1.90	2.19	2.50
4-FC_H_SCH_C_H_F-4	_	1.50	2.00	2.21
3.4-Cl ₂ C ₂ H ₂ SCH ₂ C ₂ H ₄ F-4	-	1.62	1.88	2.21
$3-CF_3C_6H_4SCH_2C_6H_4F-4$	_	1.02	2.03	2.21
A Mo NC H Hankso BLC H E A	1 00	4 70	(1)	
$4 \operatorname{Me}_{2}\operatorname{NC}_{6}\operatorname{H}_{4}\operatorname{HgN}(\operatorname{SO}_{2}\operatorname{FI})\operatorname{C}_{6}\operatorname{H}_{4}\operatorname{F}_{4}$	3.88	4.79	6.16	6.64
$4 - MeOC_6 \Pi_4 \Pi g N(SO_2 P \Pi) C_6 \Pi_4 F - 4$	3.03	4.41	-	
$4 \operatorname{MeC}_{6} \operatorname{H}_{4} \operatorname{HgN}(\operatorname{SO}_{2} \operatorname{Ph}) \operatorname{C}_{6} \operatorname{H}_{4} \operatorname{F}_{4}$	3.58	4.50	5.99	6.74
$PhHgN(SO_2Ph)C_6H_4F-4$	3.44	4.36	5.89	6.67
$4-FC_6H_4HgN(SO_2Ph)C_6H_4F-4$	3.25	4.16	-	-
4-ClC ₆ H ₄ HgN(SO ₂ Ph)C ₆ H ₄ F-4	3.18	3.97	5.69	6.48
$3-ClC_6H_4HgN(SO_2Ph)C_6H_4F-4$	3.13	3.87	-	-
$3-FC_6H_4HgN(SO_2Ph)C_6H_4F-4$	3.12	3.96	-	-
3-CF ₃ C ₆ H ₄ HgN(SO ₂ Ph)C ₆ H ₄ F-4	3.00	3.69	5.50	6.38
$3,4-Cl_2C_6H_3HgN(SO_2Ph)C_6H_4F-4$	2.88	3.59	5.40	6.27
$3,5-Cl_2C_6H_3HgN(SO_2Ph)C_6H_4F-4$	2.80	3.37	-	_
3,4,5-Cl ₃ C ₆ H ₂ HgN(SO ₂ Ph)C ₆ H ₄ F-4	2.60	3.12	5.23	6.30
Series VII				
$4-Me_2NC_6H_4CH_2N(SO_2Ph)C_6H_4F-4$	0.25	0.51	0.71	0.91
$4-MeOC_6H_4CH_2N(SO_2Ph)C_6H_4F-4$	-0.06	0.21	0.44	0.78
4-MeC ₆ H ₄ CH ₂ N(SO ₂ Ph)C ₆ H ₄ F-4	0.01	0.24	0.47	0.76
PhCH ₂ N(SO ₂ Ph)C ₆ H ₄ F-4	-0.18	0.13	0.39	0.65
4-FC ₆ H ₄ CH ₂ N(SO ₂ Ph)C ₆ H ₄ F-4	-0.45	-0.17	0.19	0.54
4-CIC ₆ H ₄ CH ₂ N(SO ₂ Ph)C ₆ H ₄ F-4	-0.53	-0.27	0.11	0.50
3-ClC ₆ H ₄ CH ₂ N(SO ₂ Ph)C ₆ H ₄ F-4	-0.53	-0.28	0.06	0.44
3-FC ₆ H ₄ CH ₂ N(SO ₂ Ph)C ₆ H ₄ F-4	-0.50	-0.23	0.13	0.50
3-CF ₃ C ₆ H ₄ CH ₂ N(SO ₂ Ph)C ₆ H ₄ F-4	-0.71	-0.45	-0.04	0.40
$3,4-Cl_2C_6H_3CH_2N(SO_2Ph)C_6H_4F-4$	-0.89	-0.59	-0.13	0.28
3,5-Cl ₂ C ₆ H ₃ CH ₂ N(SO ₂ Ph)C ₆ H ₄ F-4	-0.97	-0.67	-0.24	0.20
3,4,5-Cl ₃ C ₆ H ₂ CH ₂ N(SO ₂ Ph)C ₆ H ₄ F-4	-1.19	-0.89	-0.34	0.06
Series VIII				
4-Me-NC-H, HoN(SO-Ph)C-H-Br-2-F-4	_	1.87		
4-MeC, H, HgN(SO, Ph)C, H, Br-2-F-4	_	1.52	_	-
$PhH_{\sigma}N(SO_{\sigma}Ph)C_{\sigma}H_{\sigma}Br-2-F-4$		1.57	-	-
$4-CiC_{H}$, HoN(SO_Ph)C_H_Br_2-F-4		1.50	-	-
3.5-C1-C.H.HgN(SO.Ph)C.H.Br-2-E.A	-	0.80	-	-
$3-FC_6H_4HgN(SO_2Ph)C_6H_3Br-2-F-4$	_	1.28	_	_
Series IX				
4-Me ₂ NC ₄ H ₄ CH ₂ N(SO ₂ Ph)C ₄ H ₂ Br-2-F-4	_	- 2 29	_	_
4-MeC H. CH. N(SO. Ph)C H. Br-2-F-4	_	-2.66	-	_
$PhCH_{a}N(SO_{a}Ph)C_{c}H_{a}R_{r-2}F_{-4}$	_		-	-
$4-CiC_{2}H_{1}CH_{2}N(SO_{2}H_{2}C_{1})C_{2}H_{2}R_{2}P_{3}N(C_{2}H_{2})C_{2}H_{2}R_{2}P_{3}$	_	- 3 70	_	-
$3-FC_{2}H_{1}CH_{2}N(SO_{2}H_{1})C_{3}H_{2}-1-4$	_	-312	-	-
35-CL-CH-CH-N(SO DA)CH Dr 2 E 4	-	- 267	-	-
345-Cl-C.H-CH-N(SO Ph)C H R+ 2 E A	-	- 3.87	-	-
$PhH_{a}N(PhSO_{1}) \cap H = 2$	_200	5.67	-	-
Ph SnCH C.H E.3	- 2.00	-	-	-
113010112061141-5	0.02	-	-	-

Results and discussion

To solve the problem in question we have synthesized several series of model compounds $Ar_3SnCH_2C_6H_4F-4$ (I), $Ar_3SnSC_6H_4F-4$ (II), $ArHgSC_6H_4F-4$ (III), $ArSHgC_6H_4F-4$ (IV), $ArSCH_2C_6H_4F-4$ (V), $ArHgN(SO_2Ph)C_6H_4F-4$ (VI), $ArCH_2N(SO_2Ph)C_6H_4F-4$ (VII), $ArHgN(SO_2Ph)C_6H_3Br-2-F-4$ (VIII) and $ArCH_2N(SO_2Ph)C_6H_3Br-2-F-4$ (IX).

For I-XI the ¹⁹F NMR chemical shifts with respect to PhF were determined in different solvents (Table 1). The positive sign corresponds to highfield shifts.

By correlation analysis of the data obtained the relative transmitting ability (TA) of the investigated BBG were quantitatively assessed (Table 2).

When we correlated the ¹⁹F NMR shifts for the binuclear bridging systems I, II, III and VI with those for corresponding mononuclear compounds $Ar_3SnC_6H_4F-4$ (X) [2] and $ArHgC_6H_4F-4$ (XI) [1] we got straight lines with slopes (ρ) close to unity (Table 2, nos. 1–4). This means that for 95% confidence level the efficiency of transmission of *SEE* to the indicator F atom practically does not change or even somewhat increases in going from mono- to bi-nuclear bridge compounds.

In contrast, a similar transition from $ArCH_2C_6H_4F-4$ (XII) to $ArCH_2CH_2C_6H_4F-4$ (XIII) [6] (Table 2, no. 5) is accompanied by a considerable decrease in *TA*, which is understandable for the transition from a less extended, to a more extended system.

We investigated the transmission mechanism of SEE in binuclear bridging systems to determine the cause of increase of TA for metal-carbon or metal-heteroatom bridging groups.

On correlation of the ¹⁹F NMR shifts for I, III and VI with σ_p^0 and σ_p constants of any groups [7] (Table 2, nos. 6–11) it was established that in the first case the quality (r, S) of linear dependences obtained is markedly better than in the latter.

TABLE 2

PARAMETERS OF THE CORRELATION EQUATION $y = \rho x + c$ (*n* = number of points; *S* = estimated standard error; *r* = correlation coefficient; $\Delta \rho$ = absolute error of the coefficient ρ for 95% confidence level)

	y = ¹⁹ F NMR chemical shifts for	x = ¹⁹ F NMR chemical shifts for	n	$ ho\pm\Delta ho$	S	r	с
1	1	X	10	0.79 ± 0.04	0.100	0.997	7.90
2	П	Х	10	0.91 ± 0.05	0.102	0.997	4.35
3	III	XI	10	1.05 ± 0.16	0.081	0.978	4.52
4	IV	XI	12	1.18 ± 0.09	0.050	0.995	4.51
5	XIII	XII	5	0.30 ± 0.03	0.010	0.999	0.01
6	I	σ_p^0	5	-2.99 ± 1.05	0.125	0.982	6.53
7	I	σ_p	5	-2.12 ± 2.00	0.150	0.926	6.36
8	111	σ_p^{0}	6	-1.04 ± 0.30	0.074	0.971	4.35
9	III	σ_{p}	6	-0.66 ± 0.40	0.144	0.883	4.30
10	VI	$\sigma_p^{\prime 0}$	6	1.05 ± 0.23	0.060	0.985	1.31
11	VI	σ_{n}	6	0.72 ± 0.33	0.110	0.939	4.25
12	Х	ν́ΙΙ	6	0.64 ± 0.07	0.030	0.996	-1.27
13	XI	IX	7	1.10 ± 0.11	0.071	0.993	-2.92

Ph,,QZ	σι	σ_r^0	Ph,,Q	σι	σ_r^0	
Ph ₃ SnCH ₂	0.01	-0.21	Ph ₃ Sn	0.18	0.03	
Ph ₃ SnS	0.10	-0.14	U U			
PhHgS	0.23	-0.15	PhHg	0.12	0.02	
PhHgN(SO ₂ Ph)	0.37	-0.19	_			

TABLE 3 INDUCTIVE AND RESONANCE PARAMETERS OF Ph, QZ AND Ph, Q SUBSTITUENTS

This indicates that there is no direct polar conjugation between the p-substituents in the aromatic rings and the indicator fluorine atom in the compounds investigated.

To determine the nature of the electron interactions across different bonds in the binuclear systems being considered we have used FCS for $Ph_nQZC_6H_4F$ -4(3) (Table 1 and ref. 8) and Taft's equations [9] for calculation of the inductive (σ_I) and resonance constants of the groups Ph_nQZ , (Z = N, S or C) (Table 3). Data analysis showed that while the interactions along the metal-aromatic carbon bonds are mainly inductive (Table 3, Ph_nQ groups) a substantial contribution to the interactions along the heteroatom-aromatic carbon or aliphatic carbon-aromatic carbon bonds is made by resonance effects.

Thus, it can be concluded that the absence of decrease in TA in going from monoto bi-nuclear organometallic systems, which should have taken place if electron effects were transmitted by the π -inductive mechanism or the field effect is, most probably, explained by the presence in binuclear systems of an effective σ, π -conjugation of the metal-heteroatom or metal-carbon σ -bond with π -electrons of the fluorophenyl ring, or a $p_{\pi}-p_{\pi}$ conjugation of the heteroatom lone electron pair with the π -electron system.

To study the possible influence of specific solvation on the TA of metal-containing bridge systems they were investigated in inert and coordinating solvents. The existence of such interaction is indicated by an increase in fluorine screening in going from PhCl, inert to specific solvation of metal atoms to the coordinating DMSO (Table 1). Apparently, this results from the partial transfer of electron density of a solvent lone electron pair to the vacant orbitals of the metal atom, leading to increase in the electron-donating effect of Ph_nQZ groups. This conclusion is confirmed by very small changes in fluorine screening which occur with a similar transition for carbon-containing compounds (series V and VII).

To evaluate the possible influence of specific solvation on the TA of metal-containing BBG the ¹⁹F NMR chemical shift ranges were calculated for each series of compounds in inert and solvating solvents (Table 4). Analysis of the data obtained shows that for all the investigated series the transfer to Py and DMSO is accompanied by successive decrease in TA. The extent of this decrease, for sulphur-containing compounds is different for carbon- and mercury-containing systems. According to the literature, the decrease of TA of systems with a coordinative saturated bridging group on transfer to polar coordinating solvents takes place mainly owing to dipole-dipole interactions [12]. However, the action of the above factor alone cannot explain the decrease in TA in the case of arylmercury 4-fluorothiophenoxides where this decrease is markedly greater. For these systems, the observed effect is evidently caused by dipole-dipole and coordination interactions with the solvent. It is known that in the case of bridge systems, for which the possibility of coordination

QZ	CHCl3	Me ₂ SO	
-Sn-CH ₂ -	2.16	1.26	
-Sn-S-	2.91	1.00	
-Hg-S-	1.00	0.04	
-Hg-N-	1.28	0.40	
$-CH_2-S-$	1.44	0.86	
$-CH_2^2-N-$	1.46	0.85	

¹⁹F NMR CHEMICAL SHIFT RANGES FOR Ar_nQZC₆H₄F-4 IN CHCl₃ AND DMSO (ppm)

with the solvent is excluded, the decrease of TA in going from a non-polar to a polar solvent is proportional to the difference in Dimroth's parameters E_T [13] for these solvents. The transfer from PhCl to PhNO₂ and MeCN causes approximately the same decrease in TA for carbon compounds as the transfer to Py and DMSO (Table 5). In contrast, for organomercury compounds, the range of the ¹⁹F NMR shifts decreases less sharply in going to polar noncoordinating solvents than to Py and DMSO. These data confirm the conclusion that specific solvation plays a significant role in the decrease of TA of organomercury systems in coordinating solvents.

Considering that the investigated mercury- and carbon-containing compounds (series IV and V; VI and VII) are assumed to be structurally similar systems and, hence, the influence of the dipole-dipole ineractions on their TA should be approximately the same, we attempted to estimate the relative contribution (α) of coordination with the solvent to the overall decrease in TA for organo-mercury systems:

$$\alpha = \left\langle \left[\frac{\Delta \delta^{(19} F)_{(\text{solv.})} - \Delta \delta^{(19} F)_{(\text{PhCl})}}{\Delta \delta^{(19} F)_{(\text{PhCl})}} \right]_{\text{HgQ}} - \left[\frac{\Delta \delta^{(19} F)_{(\text{solv.})} - \Delta \delta^{(19} F)_{(\text{PhCl})}}{\Delta \delta^{(19} F)_{(\text{PhCl})}} \right]_{\text{CH}_2 Q} \right\rangle \cdot 100\%$$

where $\Delta \delta({}^{19}F)$ is the chemical shift range in the corresponding solvent and Q = S or N.

The contribution of specific solvation to the decrease in TA varies from 20 to 68% and is greater for arylmercury-4-fluorothiophenoxides than for *N*-arylmercury-4'-fluorobenzenesulphonanilides (Table 6). The smaller contribution of specific solvation for the latter system may be caused by steric hindrance by the PhSO₂ group to the approach of the coordinating solvent molecule to the Hg atom, or by the weak intramolecular coordination between the C₆H₅SO₂ oxygen and the Hg atom [14].

TABLE 5

RATIOS OF THE ^{19}F NMR CHEMICAL SHIFT RANGES IN A GIVEN SOLVENT TO THAT IN CHLOROBENZENE FOR ArSHgC_6H_4F-4 AND ArSCH_2C_6H_4F-4

System	Solvent				
	$\overline{C_6H_5NO_2}$	MeCN	C ₅ H ₅ N	Me ₂ SO	
	$(E_{\rm T} 42)$	(<i>E</i> _T 46	(E _T 40.2	$(E_{\rm T}^{-}45$	
	kcal mol ⁻¹)	kcal mol ⁻¹)	kcał mol ⁻¹)	kcal mol ⁻¹)	
ArSHgC ₆ H ₄ F-4	0.32	0.47	0.09	0.03	
ArSCH ₂ C ₆ H ₄ F-4	0.56	0.60	0.78	0.58	

86

TABLE 4

Hg–Q	Solvent		
	C ₅ H ₅ N	Me ₂ SO	
Hg-N	20	46	
Hg-S	68	57	

TABLE 6 α VALUES FOR Hg-Q (%)

To investigate further the question of the possible influence of intramolecular coordination of the TA of binuclear organomercury systems we examined the series of *N*-arylmercury-2'-bromo-4'-fluorobenzenesulphonanilides (VIII) in which, according to literature data, there may be intramolecular coordination between the Hg and the Br *o*-atoms [15], and their carbon analogues (IX).

We carried out statistical analysis of the ¹⁹F NMR data obtained for VI, VII, VIII and IX (Table 1) to obtain the relative *TA* of BBG Hg–N and CH₂–N in the *o*-bromo-substituted and unsubstituted systems. According to the results, (Table 2, nos. 12, 13) the introduction of the Br atom at the *o*-position to the ArHgNSO₂Ph group results in a substantial decrease in *TA* of the corresponding system. A similar process for the C analogues has practically no effect on the *TA* of the CH₂–N group. These results indicate that the decrease in *TA* going from VI to VIII can be attributed to the influence of intramolecular coordination.

Thus, we may conclude that the TA of metal-containing BBG depends substantially on the participation of the metal atom in the inter- and intra-molecular coordination interactions, the TA of the systems decreases with increasing intensity of coordination interactions.

Experimental

The ¹⁹F NMR spectra were recorded at 25°C on the RYA-2309 and Tesla BS-497 spectrometers operating respectively at 84.56 and 94.075 MHz. All measurements were done on solutions of 0.2 and 0.05 *M* concentrations. The experimental error in the estimation of chemical shifts was not greater than \pm 0.01 ppm. All solvents used were purified by conventional methods and distilled under dry argon.

The compounds studied have been synthesized by conventional methods and their preparations has been described elsewhere [16-21].

References

- 1 L.S. Golovchenko, S.I. Pombrik, A.S. Peregudov and D.N. Kravtsov, Izv. Akad. Nauk SSSR, Ser. Khim., in press.
- 2 D.N. Kravtsov, B.A. Kvasov, T.S. Khazanova, E.I. Fedin, J. Organomet. Chem., 61 (1973) 219.
- 3 S.I. Pombrik, D.N. Kravtsov, B.A. Kvasov and E.I. Fedin, J. Organomet. Chem., 136 (1977) 185.
- 4 S.I. Pombrik, V.F. Ivanov, A.S. Peregudov, D.N. Kravtsov, L.A. Fedorov and E.I. Fedin, J. Organomet. Chem., 153 (1978) 319.
- 5 S.I. Pombrik, D.N. Kravtsov, A.S. Peregudov, E.I. Fedin and A.N. Nesmeyanov, J. Organomet. Chem., 131 (1977) 355.
- 6 I.R. Ager, L. Phillips and S.I. Roberts, J. Chem. Soc. Perkin Trans. II (1972) 1988.
- 7 P.R. Wells, E. Ehrenson and R.W. Taft, Progr. Phys. Org. Chem., 6 (1968) 204.
- 8 A.N. Nesmeyanov, D.N. Kravtsov, B.A. Kvasov, E.M. Rokhlina, A.M. Pachevskaya, L.S. Golovchenko and E.I. Fedin J. Organomet. Chem., 38 (1972) 307.

- 88
- 9 R.W. Taft, E. Price. I.R. Fox, J.C. Lewis, K.K. Anderson and J.T. Davis J. Am. Chem. Soc., 85 (1963) 3146.
- 10 W.F. Reynolds and G.K. Hamer, J. Am. Chem. Soc., 98 (1976) 7296.
- 11 W. Adcock and M.I.S. Dewar, J. Am. Chem. Soc., 89 (1976) 379.
- 12 S.K. Dayal and R.W. Taft, J. Am. Chem. Soc., 95 (1973) 5595.
- 13 T.R. Griffits and D.C. Pugh, Coordin. Chem. Rev., 29 (1979) 129.
- 14 L.G. Kuzmina, N.G. Bokii, Yu.T. Struchkov, A.S. Peregudov and D.N. Kravtsov, Zh. Strukt. Khim., (1976) 333.
- 15 A.S. Peregudov, D.N. Kravtsov and L.A. Fedorov, J. Organomet. Chem., 71 (1974) 347.
- 16 S.I. Pombrik, A.S. Peregudov, E.I. Fedin and D.N. Kravtsov, Izv. Akad. Nauk SSSR, Ser. Khim., (1982) 2375.
- 17 S.I. Pombrik, L.S. Golovchenko, A.S. Peregudov and D.N. Kravtsov, Izv. Akad. Nauk SSSR, Ser. Khim., (1983) 803.
- 18 A.N. Nesmeyanov, D.N. Kravtsov and S.I. Pombrik, Izv. Akad. Nauk SSSR, Ser. Khim., (1982) 474.
- 19 A.N. Nesmeyanov, S.I. Pombrik, E.V. Polunkin, L.S. Golovchenko, A.S. Peregudov, D.N. Kravtsov and E.I. Fedin, Izv. Akad. Nauk SSSR, Ser. Khim., (1981) 763.
- 20 S.I. Pombrik, E.V. Polunkin, A.S. Peregudov, E.I. Fedin and D.N. Kravtsov, Izv. Akad. Nauk SSSR, Ser. Khim., (1982) 1289.
- 21 S.I. Pombrik, E.V. Polunkin, A.S. Peregudov and D.N. Kravtsov, Izv. Akad. Nauk SSSR, Ser. Khim., in press.